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Abstract The neutral endo-b-glucanase gene cel5A from

Humicola insolens was cloned and connected with the

cellobiohydrolase 1 promoter from Trichoderma reesei to

construct a recombinant plasmid pCB-hEG with the hy-

gromycin B resistance marker. The plasmid was introduced

into conidia of T. reesei using the Agrobacterium tum-

efaciens mediated transformation method. Eight transfor-

mants were obtained on screening plates with sodium

carboxymethyl cellulose as the sole carbon source. Stable

integration of the cel5A gene into the chromosomal DNA

of T. reesei was confirmed by PCR. An obvious protein

band (approximately 52 kDa) was detected by SDS-PAGE

from fermentation broth, which showed that the cel5A gene

in recombinant T. reesei successfully fulfilled efficient

expression and extracellular secretion. After 96 h shaking-

flask fermentation, the endo-b-glucanase activity at pH 6.5

from recombinant T. reesei reached 3,068 U/ml, which was

11 times higher than that of the host strain. In a 2 m3

fermenter, the endo-b-glucanase activity could be further

increased to 8,012 U/ml after 96 h fermentation. The

results showed a good prospect for application of neutral

endo-b-glucanase in the textile industry.
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Introduction

Endo-b-glucanase (EG), cellobiohydrolase (CBH) and

cellobiase (CB) are three main types of cellulolytic

enzymes produced by fungi and bacteria [1, 5, 20, 26].

They act synergistically in the hydrolysis process of crys-

talline cellulose [24, 25]. The EG hydrolyzes cellulose

chains internally to produce new chain ends. The CBH

hydrolyzes cellulose chains progressively from the chain

ends to create mainly cellobiose. The CB hydrolyzes cel-

lobiose and other cello-oligosaccharides to form glucose

[27]. The major sources of cellulases are cellulolytic

microorganisms, including fungi and bacteria, which are

responsible for most of the cellulose degradation in soils.

Cellulase gene has been recombinantly expressed in host

organisms, such as Escherichia coli, yeast, and filamentous

fungi [7, 23]. The filamentous fungus Trichoderma reesei

produces a variety of extracellular cellulases and hemi-

cellulases. It has enjoyed a long history of safe use for

cellulase production and serves as a model for studying

lignocellulose degradation. The readily available genome

sequence of T. reesei provides a roadmap for constructing

enhanced T. reesei strains for industrial applications [14].

The strong promoter of the CBH I gene has been widely

used for the over-expression of homologous and heterolo-

gous proteins in T. reesei [19].

Cellulases are used in the textile industry for biofinish-

ing of cellulose-containing fibers, e.g., biofinishing of

indigo-dyed denim fabric to impart a stone-washed effect.

T. reesei cellulases are used commercially in biofinishing

of denim fabric due to their high activity in an acid envi-

ronment (about pH value 4.8). But the utilization of T.

reesei cellulases is sometimes restricted by the problem of

backstaining, for the released indigo dyes would redeposit

on denim fabrics in the acid conditions. Neutral cellulases
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have superior biofinishing properties such as low back-

staining [3]. Therefore, the construction of neutral cellulase

overproducing strains is an available way to improve the

effects of biofinishing.

Endo-b-glucanases are grouped into more than 11 gly-

coside hydrolase (GH) families based on sequence and

structure [2]. The filamentous fungus Humicola insolens

produces many different cellulases. HiCel5A is a GH

family 5 EG [13]. The H. insolens cel5A gene has already

been cloned and sequenced [4]. The amino acid sequence

of the HiCel5A was found to be homologous with EG II

from T. reesei. Enzymatic properties of HiCel5A have been

characterized [13]. HiCel5A shows high catalytic activity

under neutral conditions. The overall aim of our work is to

create a recombinant T. reesei strain expressing H. insolens

HiCel5A and improve biofinishing processes by reducing

backstaining. In this study, the H. insolens cel5A gene was

cloned. Over-expression of the cel5A gene and extracel-

lular secretion of enzyme protein were successfully

achieved by recombinant T. reesei. This made possible the

use of the EG preparations produced by the transformants

in the biofinishing application at neutral pH.

Materials and methods

Strains and media

Escherichia coli DH5a was used for the propagation of

plasmids. T. reesei ZU-02, stored in our laboratory [29], was

used as a recipient for fungal transformation and chromo-

somal DNA preparation. H. insolens ATCC 16454 was used

for isolation of the cel5A gene. Agrobacterium tumefaciens

strain AGL-1 [10] was used as a T-DNA donor for mainte-

nance of constructs and for fungal transformation.

The seed medium for H. insolens and T. reesei had the

following composition (g/L): glucose 20, corn steep liquor

9, KH2PO4 10, (NH4)2SO4 5, MgSO4�7H2O 1, CaCl2 0.5,

FeSO4�7H2O 0.005, MnSO4�H2O 0.0016, ZnSO4�7H2O

0.0014 and CoCl2�6H2O 0.0037.

The composition of the fermentation medium for T.

reesei was as follows (g/L): lactose 18, microcrystalline

cellulose 20, corn steep liquor 12, KH2PO4 10, (NH4)2SO4

5, MgSO4�7H2O 1, CaCl2 0.5, CaCO3 1.8, wheat bran 2,

Tween 80 0.2, FeSO4�7H2O 0.005, MnSO4�H2O 0.0016,

ZnSO4�7H2O 0.0014 and CoCl2�6H2O 0.0037. The initial

pH value of the medium was adjusted to 4.8.

The composition of the liquid induction medium (IM)

for A. tumefaciens was as follows (per litre): 1 ml potas-

sium-buffer pH 7.0 (200 g/L K2HPO4, 145 g/L KH2PO4),

20 ml magnesium-sodium solution (30 g/L MgSO4�7H2O,

15 g/L NaCl), 1 ml 1 % CaCl2�2H2O (w/v), 1 ml 0.1 %

FeSO4 (w/v), 5 ml trace elements (100 mg/L ZnSO4�7H2O,

100 mg/L CuSO4�5H2O, 100 mg/L H3BO3, 100 mg/L

MnSO4�H2O, 100 mg/L Na2MoO4�2H2O), 2.5 ml 20 %

NH4NO3 (w/v), 10 ml 50 % glycerol (w/v), 40 ml 21 %

2-(N-morpholino) ethanesulfonic acid (w/v) pH 5.3, 10 ml

20 % glucose (w/v) and 200 lmol acetosyringone (AS).

Cloning of H. insolens cel5A gene

Conidia of H. insolens were inoculated into the seed

medium and cultured at 30 �C, 200 rpm for 3 days. The

mycelia were then frozen in liquid nitrogen and ground to

fine powder with mortar and pestle. Total RNA was then

isolated from this powder using the TRNzol reagent

(Takara, Japan). Synthesis of cDNA from the total RNA

was carried out using the reverse transcriptase-polymerase

chain reaction kit (Takara, Japan). The DNA amplification

was performed with a forward primer (50-TTACTCGAGC

AGGGCGGTGCATGGCAGCAG-30, containing XhoI

site) and a reverse primer (50-GCGTCTAGACTATG

GCACGTATTTCTTGAG-30, containing XbaI site) using

the obtained cDNA as template. The resulting PCR product

was cloned into a pMD18-T simple vector (Takara, Japan).

Construction of vector with cellobiohydrolase 1

promoter and terminator

Conidia of T. reesei ZU-02 were inoculated into the seed

medium and cultured at 30 �C, 200 rpm for 3 days. The

mycelia were then frozen in liquid nitrogen and ground to

fine powder with mortar and pestle. Fungal genomic DNA

was prepared from this powder by the method of cetyltri-

methylammonium bromide (CTAB) [21].

The PCR amplification of CBH 1 promoter (Pcbh1) with

its signal sequence (ss) and CBH 1 terminator (Tcbh1)

from T. reesei was carried out with the primers P1 (50-G
TAGGATCCAAGCTTCCATTTGGCGGCT-30), P2 (50-C
CGCTCGAGAGCTCGAGCAGTAGCCAAG-30), and T1

(50-CGCTCTAGATGAACCCTTACTACTCTCAGT-30),
T2 (50-ATTAAGCTTACTAGTGTCCTCGGCACGTTGT

CATC-30) using the chromosomal DNA of T. reesei as

template.

The vector pPT containing the Pcbh1-ss and Tcbh1 was

constructed with PUC18 as a vector backbone. The cel5A

gene was inserted into the plasmid pPT under the control of

Pcbh1 and its signal peptide to create the Pcbh1-ss-cel5A-

Tcbh1 expression cassette.

Construction of recombinant vector containing

hygromycin B resistance gene

The 1.4 kb PtrpC-hph expression cassette (the hygromycin

B phosphotransferase gene hygB, under the control of the

PtrpC gene promoter) was amplified with the primers H1
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(50-CGCCACCATGTTGGGACGTTAACTGATATTGAA

GG-30) and H2 (50-GCCTCGAGCGTTAACTGGTTCCC

GGTCGGC-30) using the plasmid pDESTR (Genebank:

AB218275.1) as template. The PCR products were cloned

into the vector pCAMBIA1300 to create recombinant

vector pPCB. The Pcbh1-ss-cel5A-Tcbh1 expression cas-

sette was inserted into the pPCB vector to obtain recom-

binant plasmid pCB-hEG (Fig. 1).

Agrobacterium-mediated fungal transformation

Agrobacterium tumefaciens AGL1 was electroporated with

pCB-hEG as previously described [17]. The strain of A.

tumefaciens AGL-1 containing pCB-hEG was cultured at

28 �C for 36 h in LB medium supplemented with 50 lg/ml

kanamycin and 25 lg/ml rifampicin. The cells of A. tum-

efaciens were collected and diluted to an optical density of

0.15 at 660 nm (OD660) in liquid IM with 200 lM AS, and

then grown at 28 �C for 8 h.

The strain of T. reesei was cultured at 30 �C for 5 days

on a plate with potato dextrose agar (PDA). The conidia

were obtained by washing the plate gently with physio-

logical salt solution, and re-suspended in liquid IM.

For co-cultivation, 50 ll of the T. reesei conidial sus-

pension (107 conidia per milliliter) was mixed with an

equal volume of A. tumefaciens cells (OD660 between 0.4

and 1.0), spread on the surface of nitrocellulose filters

placed on solid IM plates (the same as liquid IM except that

it contains 5 mM glucose and 18 g agar per litre). After

incubation at different temperatures (20–30 �C) and pH

(5.0–6.2) for 48 h, the nitrocellulose filter was transferred

to solid PDA plates containing 150 lg/ml hygromycin B as

selection agent for fungal transformants and 200 lM cef-

otaxime to kill the cells of A. tumefaciens. The transfor-

mants were subsequently transferred to PDA plates

containing 150 lg/ml hygromycin B.

All the transformants were inoculated onto PDA plates

and cultured for 3 days. Three hyphal clumps (4 mm in

diameter) were cut from the edge of each colony and

transferred onto screening plates containing (g/L): sodium

carboxymethyl cellulose (CMC) 20, KH2PO4 2.0,

(NH4)2SO4 1.4, MgSO4�7H2O 0.5, CaCl2 0.3, FeSO4�7H2O

0.005, MnSO4�H2O 0.0016, ZnSO4�7H2O 0.0014,

CoCl2�6H2O 0.0037 and agar 18. After cultivation for

3 days, fast-growing transformants were selected for fur-

ther analysis.

Detection of target gene in recombinant T. reesei

Fungal genomic DNA of the transformant was prepared by

the method of CTAB [21]. The PCR amplification of H.

insolens cel5A gene was carried out using genomic DNA of

T. reesei transformant and the host strain as template with

the upstream and downstream primer of H. insolens cel5A

gene. The PCR products were assayed by agarose gel

electrophoresis.

Fermentation test in Erlenmeyer flask

Production of EG from T. reesei transformant was carried

out in a 250 ml Erlenmeyer flask with 50 ml of fermen-

tation medium. The inoculum ratio was 10 % (v/v), and the

broth was cultured at 30 �C, 180 rpm for 168 h. Three

replicated experiments were performed for every strain.

Production of endo-b-glucanase in a 2 m3 fermenter

A 2 m3 stirred-tank fermenter with a working volume of

1.5 m3 was used for production of EG. The inoculum ratio

was 10 % (v/v). The fermentation temperature was

28–30 �C, initial pH value was 4.8, the agitation speed and

air flow rate were kept at 160 rpm and 90 m3/h, respec-

tively. During the whole fermentation process, samples

were periodically withdrawn for analysis of enzyme

activities.

Analysis methods

Measurement of EG activity was based on a previously

published protocol [8] with modifications. The CMC

(Sigma, USA) solution in sodium acetate buffer (pH 6.5,

1 %, 1.0 ml) was used as substrate, and was mixed with

diluted crude enzyme solution (0.5 ml) to react at 50 �C for

15 min. The reducing sugar formed was estimated by a 3,5-

dinitrosalicilic acid colormetric assay (DNS) method. One

unit of EG activity is the amount of enzyme that produces

1 mg of glucose (reducing sugars as glucose) per hour

during the hydrolysis reaction.

Fig. 1 Illustration of recombinant vector pCB-hEG with H. insolens
cel5A gene

J Ind Microbiol Biotechnol (2013) 40:773–779 775

123



The molecular mass of HiCel5A in the crude fermentation

broth produced by recombinant T. reesei was determined by

SDS-PAGE (12 % polyacrylamide). The gel was stained

with Coomassie Brilliant Blue R-250, and destained over-

night in 20 % methanol and 10 % acetic acid.

Results

Construction of expression plasmid

The cel5A gene was cloned from H. insolens. Comparison

of the sequence with that registered in GenBank (accession

no. X76046) showed two nucleotide differences at posi-

tions 363 (G-C) and 723 (C-T), and there is no difference in

the deduced amino acid sequence.

The recombinant vector pCB-hEG containing the hygro-

mycin B resistance gene and the cel5A gene expression cas-

sette was used throughout the study to obtain independent

cel5A integrated transformants by the AMT procedure. The

strong promoter of Pcbh1 has been widely used for overex-

pression of homologous and heterologous proteins in T.

reesei [19]. Therefore, the cel5A gene from H. insolens could

be efficiently expressed and its products secreted under the

control of Pcbh1 and the signal peptide from T. reesei. In

addition, the hygromycin B resistance marker simplified the

screening procedure for positive transformants. It suggested

that the expression system of T. reesei had been successfully

established, which could be used in overexpression of het-

erologous proteins in T. reesei.

Main factors effecting transformation efficiency

Co-cultivation conditions of T. reesei conidia with A. tum-

efaciens cells have an important influence on transformation

efficiency. Increasing the density of A. tumefaciens cells led

to an increase in the transformation efficiency. However,

when the density of A. tumefaciens cells was up to OD660 of

0.8, the addition of too many A. tumefaciens cells did not

improve the transformation efficiency (Fig. 2a). The optimal

co-cultivation temperature leading to the highest transfor-

mation frequency was 25 �C (Fig. 2b). This result was con-

sistent with the observations made in AMT of other fungi,

where similar temperatures were found to be optimal for

transformation [6, 16]. The effect of pH was also assessed. It

was found that the optimal pH was 5.4 (Fig. 2c). Co-culti-

vation pH higher than 5.8 was less favourable and no trans-

formant was obtained at pH 6.4.

In the AMT experiment, 351 transformants were

obtained and then cultured on screening plates with CMC

as the sole carbon source. Eight fast-growing ones (named

H1-H8), as indicated by their larger colonies, were selected

for further analysis. The AMT method is an effective and

suitable technique for fungal transformation [11, 15]. Cells

of Agrobacterium can transform intact cells, conidia and

protoplasts. By this method, a large number of stable

transformants with integrated DNA were generated, indi-

cating that the AMT method was an efficient tool for

molecular manipulation.

Verification of the chromosomal DNA of recombinant

T. reesei

To confirm that the H. insolens cel5A gene was effectively

integrated into the host genome, PCR experiments were

Fig. 2 Effect of co-cultivation conditions on the efficiency of

Agrobacterium-mediated T. reesei transformation. a Effect of the

density of A. tumefaciens cells, b Effect of co-cultivation temperature,

c Effect of co-cultivation pH. Transformation efficiency is evaluated

as the number of transformants per 107 conidia. Values are means of

three determinations and error bars are standard deviations
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carried out using genomic DNA of T. reesei transformant

and the host strain as template with the upstream and

downstream primer of H. insolens cel5A gene. A PCR

product of 1.1 kb DNA fragment was amplified from the

genomic DNA of the recombinant T. reesei, while no PCR

product was amplified from the genomic DNA of the host

strain. The PCR product was cloned into the pMD18-T

cloning vector and then sequenced. The results were in

complete agreement with the nucleotide sequence of H.

insolens cel5A gene. It demonstrated that the H. insolens

cel5A gene had been integrated stably into the chromo-

somal DNA of recombinant T. reesei.

The host strain and the transformants were cultured for

24 h to investigate the production of the heterologous Hi-

Cel5A. The molecular weight of HiCel5A in the crude

fermentation broth was determined by 12 % SDS-PAGE

analysis. The results (Fig. 3) revealed that the transfor-

mants secreted the recombinant HiCel5A of about 52 kD, a

molecular weight expected for the expressed H. insolens

HiCel5A. The data further verified the effective expression

of the cel5A gene in the T. reesei transformants and the

successful secretion of the enzyme protein from the cell.

Endo-b-glucanase production in shaking-flask

After 96 h shaking-flask fermentation, the culture superna-

tants of the eight transformants were collected for enzyme

activity assay. All the transformants possessed EG activity

higher than 2,000 U/ml, with the maximum value of 3,068 U/

ml from transformant H5, which was 11 times as high as that

of the host strain (278 U/ml). Conidial isolates derived after

ten generations from the primary transformant H5 showed the

same resistance level to hygromycin as the primary trans-

formant. Moreover, these isolates exhibited EG activity

similar to that of the primary transformant. Although the

strain of T. reesei was widely used for the production of

homologous and heterologous proteins, the yield of heterol-

ogous proteins was usually low [9]. In this study, the H. in-

solens cel5A gene was fused to the CBH 1 signal sequence

from T. reesei to enhance the secretion of heterologous pro-

tein. The experimental results showed the gene fusion strat-

egy was very successful in expression of H. insolens cel5A

gene. The N-terminal fungal fusion partner has been sug-

gested to stabilize the recombinant mRNA, so fusion strate-

gies are used to facilitate translocation of foreign proteins in

the secretion pathway and to protect the heterologous protein

from degradation [18, 22].

Endo-b-glucanase production in a 2 m3 fermenter

The time course of EG production in a 2 m3 fermenter is

shown in Fig. 4. The maximal EG activities reached

8,012 U/ml on the 4th day of incubation. The higher EG

activities in the fermenter were considered to have resulted

from the higher level of dissolved oxygen and the more

efficient mass transfer as compared to shake-flask cultiva-

tion. Recently, some studies on the production of neutral

EG were reported, but the production levels were relatively

low [12, 28]. The results indicated that H. insolens cel5A

gene was efficiently expressed and the recombinant Hi-

Cel5A with high enzyme activity was achieved.

Trichoderma reesei is an industrially important fila-

mentous fungus due to its effective production of hydro-

lytic enzymes. The cellulolytic enzyme system of T. reesei

is composed of two CBHs (Cel6A and Cel7A), at least five

EGs (Cel7B, Cel5A, Cel12A, Cel61A Cel45A) and two

CBs (Cel3A and Cel1A). For total hydrolysis of cellulose

into glucose, a combination of all cellulases (CBHs, EGs

Fig. 3 SDS-PAGE analysis of recombinant HiCel5A from T. reesei
fermentation broth. Lane M protein standard markers, Lane 1 proteins

secreted by the host strain, Lane 2 proteins secreted by T. reesei
transformant

Fig. 4 The time course of endo-b-glucanase production in 2 m3

fermenter by recombinant T. reesei H5. Filled circles enzyme

activity, filed triangles pH. Values are means of three determinations

and error bars are standard deviations
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and CBs) will be the optimal choice. However, for a bio-

finishing application, only EGs are required. The EGs

derived from T. reesei are acid cellulases and exhibit low

enzyme activity under near-neutral conditions. In this

study, EG preparation derived from the HiCel5A-produc-

ing T. reesei H5 exhibits high catalytic activity at neutral

pH. Up to now, most biotechnological processes are based

on the use of crude enzymes, and high activity of the

enzyme is crucial. Therefore, the results suggest that EG

production by recombinant T. reesei at large scale had

industrial application potential.

Conclusion

A recombinant plasmid pCB-hEG with the hygromycin B

resistance marker was successfully constructed, in which

the cel5A gene from H. insolens was inserted between the

strong promoter Pcbh1 and the terminator Tcbh1 from T.

reesei. The plasmid was introduced into the conidia of T.

reesei by the AMT method. T. reesei transformants with

high neutral EG activity were obtained. The results of this

investigation showed a good prospect for application of

neutral cellulase from T. reesei transformants.
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